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J. Phys.: Condens. Matter 2 (1990) 7435-7443. Printed in the UK 

Abinitio study of Si(ll1) J3 x ,/3-Sn using molecular 
dynamics total energy methods 

S K Ramchurn, D M Bird and D W Bullett 
School of Physics, University of Bath, Bath BA2 7AY, UK 

Abstract. An ab-initio relaxation of the Si ( l l1 )  ,/3 x ,/3-Sn structure is performed. 
The LDA total energy is minimized using the molecular dynamics method of Car 
and Parrinello, with the inclusion of separable, non-local pseudopotentials. The 
pseudopotential implementation is discussed in detail. Competing sites for the Sn 
adatom are investigated. Results agree well with recent x-ray diffiraction experiments. 

1. Introduction 

It is now well established that the calculation of total energies within the local density 
approximation (LDA) can be sufficiently accurate for the equilibrium structures of, for 
example, crystals, defects and surfaces to be predicted with some confidence. Most 
work has been carried out on semiconductors and has used a pseudopotential formal- 
ism to calculate the total energy (for recent reviews see Srivastava and Weaire 1987 
and Ihm 1988). The method is now being applied to  increasingly large and complex 
systems (e.g. adsorbates on surfaces) where experimental determination of the struc- 
ture is often very difficult and where theoretical prediction of the relaxed structure 
and comparison between competing adsorbate sites can provide considerable insight 
into the adsorbate-substrate interaction (e.g. Meade and Vanderbilt 1989, Bedrossian 
et a1 1989, Lyo e t  a1 1989). Allied to  the increase in the size of the systems studied 
is a dramatic increase in the computational time required, and considerable effort has 
been made to  increase the efficiency of the calculations. The most significant of these 
improvements is the introduction of some kind of iterative diagonalization technique 
(e.g. Meade and Vanderbilt 1989, Nex 1987) where the number of operations required 
for diagonalization of an N x N matrix scales with N considerably slower than the 
standard N 3 .  In a pseudopotential calculation N will be the number of plane waves 
that are required at  each k-point to give a good description of the valence wavefunc- 
tions. With an N 3  dependence it rapidly becomes prohibitive to perform calculations 
on structures with a large unit cell or where (for example, in oxides or transition metal 
compounds) pseudopotentials are relatively strong and a large number of plane waves 
are required to  provide accurate wavefunctions. 

One of the most attractive of the iterative methods is that introduced by Car and 
Parrinello (1985) which combines molecular dynamics techniques with a pseudopoten- 
tial total energy formalism to relax both the electrons and ions to their ground state 
configurations. A particular feature of this approach is that the electrons and ions are 
treated on the same footing, so that it is not necessary to  generate fully self-consistent 
electronic configurations every time the forces on the ions are calculated. Instead, 
the ions are moved in response to the forces calculated at each molecular dynamics 
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timestep, and as energy is removed from the system (by damping) the electrons and 
ions settle into an equilibrium structure. Provided the ionic displacements at  each step 
are small the ions and electrons remain in approximate equilibrium throughout the 
molecular dynamics calculation, and by judicious choice of the timestep and damping 
factors convergence to the ground state can be fairly swift (Payne e t  a1 1986). Al- 
though it is not guaranteed that in any one run the true ground state is found, by 
performing runs with different starting configurations the danger of finding metastable 
solutions can be reduced. The molecular dynamics method has been extended by 
Payne et  a1 (1986), and by Allan and Teter (1987) and has been successfully applied 
to a number of systems (Ballone e t  a1 1988, Payne et  a1 1987, Needels e t  a1 1987, 
Payne 1987, for a recent review see Payne et  a1 1990). One technical problem in using 
the molecular dynamics method is that non-local pseudopotentials are rather difficult 
to  handle-much of the work in the above papers refers to Ge which is rather well 
described by a local pseudopotential. In the general case it is important to  be able to 
handle non-local potentials; the details of why these potentials cause a problem, the 
way in which we have included them and the results of test calculations are described 
in section 2. In section 3 we apply the molecular dynamics method to the Si(l l1) 
d3 x d3-Sn structure in order to  compare our predicted structure with that recently 
determined by graxing-angle x-ray studies (Conway e t  a1 1989). 

2. The molecular dynamics method 

In a pseudopotential total energy calculation the valence wavefunctions Qn are ex- 
panded using a plane-wave basis set 

where the ~ ~ , ~ ( k )  are the plane wave coefficients for state n at k-point I C .  The Car- 
Parrinello equations of motion for these coefficients become (Payne et  a1 1986) 

- c [ v H ( g  - g’) + vxc(g - g’) + + 9, + g‘)]cn,g’(k) (2) 
9’ 

where p is the fictitious mass given to  the coefficients, the A, are the expectation values 
of the Kohn-Sham Hamiltonian (Kohn and Sham 1965) for state n (which in equi- 
librium become the Kohn-Sham eigenvalues), and VH, Vxc and VOn are the Hartree, 
exchange correlation and ionic pseudopotential parts respectively of the Kohn-Sham 
potential. With a local pseudopotential, the Yon term also becomes simply a function 
of (g - 9’) and by using fast Fourier transforms (FFTS) between real and reciprocal 
space the ‘force’ terms on the right-hand side of (2) can be calculated for al l  g in - N In N operations. Note that N here refers to  the number of grid points (in both 
real and reciprocal space) used in the three-dimensional FFTs and is greater, typically 
by a factor of about three, than the number of plane waves g for which the coefficients 
are calculated in (1) and (2). This is because the grid points must form a regular ‘box’, 
while the included vectors g are usually chosen to lie within a sphere of a given cut-off 
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radius. The reduction in the number of operations which the FFTs allow is vital to the 
success of the molecular dynamics method because, in principle, it allows calculations 
with very large basis sets to be performed. The problem with non-local potentials is 
now apparent: in (2) it would seem that for each of the N g on the left hand side 
we must sum over N g‘ on the right, a total of N 2  operations. Combined with the 
relatively large number of timesteps which are needed for convergence of the molec- 
ular dynamics, this N 2  dependence would remove any advantage the Car-Parrinello 
scheme has over conventional diagonalization. 

I t  is therefore essential to reduce the N 2  scaling. This has been achieved by Allan 
and Teter (1987) by using the separable pseudopotentials introduced by Kleinman and 
Bylander (1982). Here, a local part of the potential, VL is separated out: 

&,(k + 9, k + 9‘) = VL(g - 9’) + IfNL(& + g, k + 9’) (3) 

and, for a single atomic species, the non-local contribution, VNL, is written 

where PI is the Legendre polynomial of order 1 and Bqql is the angle between q and 
q’. Il(q) and I! are projection and scaling integrals, respectively: 

If = 1” d r  r 2 [ 4 1 ( ~ ) ] 2 A y ( ~ ) .  

where j ,  is a spherical Bessel function of order I ,  r j 5 1 ( ~ )  is the radial part of the pseudo- 
wavefunction used to generate the pseudopotential component &(r)  and A y  is the 
difference between this and the local potential VL(r): 

A K ( r )  = v ( r )  - VL(r). (6) 

As usual, we include only the 1 = 0 , l  and 2 components, in which case the non-local 
contribution to the ‘force’ in (2) can be written: 
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(7a), (7b) and (7c) represent the s, p and d contributions respectively. In these equa- 
tions we have explicitly included the structure dependent terms which depend on the 
atomic coordinates r,,. To indicate that there may be more than one species of atom 
in the unit cell the projection and scaling integrals also have a label p .  The sums over 
i and j represent sums over the Cartesian coordinates z , y , t  and Cl is the unit cell 
volume. In a very similar way we can derive expressions for the non-local contribu- 
tion to  the force on the ions within the Kleinman-Bylander scheme. As for the local 
component of the force the Hellmann-Feynman theorem is used (e.g. Srivastava and 
Weaire 1987). As an example, the 1 = 1 contribution becomes 

where Im represents the imaginary part. The 1 = 0 and 1 = 2 force components have a 
very similar form which may be derived by comparison of (8) and (7b). The separation 
(4) of the pseudopotential means that the number of operations required to evaluate 
(7) and (8) now scales as N because the sums over g' need be performed only once at 
each timestep. However, a fairly large number of operations may still be required; in 
the 1 = 2 contribution of (7c), nine g' sums are needed for the ( i , j )  components. The 
non-local electron and ion dynamics can now be encoded straightforwardly and this 
simply adds two subroutines to existing Car-Parrinello programs. 

A number of tests have been carried out, to  check both the coding of the non-local 
potential contributions and whether the hitherto little used Kleinman and Bylander 
(1982) potentials give results that are as good as conventional, non-separable schemes. 
Silicon, in various forms, has been used as the test material. Norm-conserving pseu- 
dopotentials were generated using the method described by Kerker (1980), with silicon 
in a configuration. The Ceperley-Alder exchange-correlation functional 
was  used, as parametrized by Perdew and Zunger (1981). The form of the projection 
integrals (5a) for various choices of local potential are shown in figure 1. In order to 
compare the local and non-local contributions we plot both VL(q) and its most obvious 
non-local equivalent, 4s Io(0)lo(q)/I; (see (4)). Although only the I = 0 correction 
can be visualized in this way, it does show the relative sizes of the local and non-local 
potentials and their respective q dependences. 

The coding of the non-local electronic forces (7) was tested first by calculating the 
electronic structure of a 'crystal) containing one silicon atom per simple cubic unit cell, 
with a lattice parameter of 10 A. Clearly, the results should be very similar to  those 
obtained for an isolated atom. We used a Fourier transform box with (24)3 points 
and a kinetic energy cut-off of 11.0 Ryd, which generates 4139 plane waves. A single 
k-point at (O,O,O) was used. Despite the large number of plane waves the calculation 
converges quickly-convergence of the total energy to  one part in lo5 was obtained 
after about fifty molecular dynamics timesteps. Results for the total energy and the 
lowest two eigenvalues are shown in table 1. It can be seen that whether the 1 = 0 , l  or 
2 component is taken to be the local pseudopotential, the non-local corrections return 
the total energy and eigenvalues to  very similar values. The eigenvalues should also 
be compared with those for a neutral silicon atom; 3s = -0.80 Ryd, 3p = -0.31 Ryd. 

The non-local contributions to  the Hellmann-Feynman forces (8) were tested with 
two silicon atoms in the same cubic cell. With their separations differing by 5 x A 
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(a] 
Figure 1. Comparison of local and non-local potentials in 15-space. In all cases curve 
Lis  the local part VL(q) and curve NL is the non-local contribution 4a Z o ( O ) I o ( q ) / Z : .  
For comparison the Fourier transform of the ionic Coulomb potential is also shown 
(curve C). The vertical scale is arbitrary but consistent between figures. The hori- 
zontal scale is q in A-'. ( a )  Si, I = 1 local; ( b )  Si, 1 = 2 local; (c) Sn, 1 = 1 local; 
( d )  Sn, 1 = 2 local. 

Table 1. Comparison of the total energy and eigenvalues from local (bracketed) and 
non-local calculations of a single Si atom in a 10 A cubic cell, for various choices of 
the local potential. 

Local component l = O  1 = 1  1 = 2  

Total energy (Ryd) -7.41 (-7.31) -7.42 (-8.04) -7.42 (-11.06) 
3s eigenvalue (Ryd) -0.78 (-0.82) -0.78 (-1.00) -0.77 (-1.71) 
3p eigenvalue (Ryd) -0.27 (-0.25) -0.26 (-0.22) -0.26 (-0.23) 

the electronic system was relaxed to the ground state and the ion forces compared with 
values obtained numerically from total energy differences. Again, excellent agreement 
was  obtained. Our final tests involved eight silicon atoms in a cubic cell. For these 
calculations a cut-off of 7.35 Ryd was used, which corresponds to using about 450 
plane waves. The lattice parameter was varied between 5 8, and 6 A, and the Fourier 
transform box had (16)3 points. Runs were performed both with the ions starting 
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in their correct positions within the diamond structure and with displaced starting 
positions. Electronic convergence took about 300 timesteps, and in calculations where 
the ions were displaced, a further 200 steps were necessary for them to settle into the 
diamond structure, with residual forces of less than 0.01 eV A-1. After this number 
of steps the total energy had converged to  about one part in lo6. With a single k- 
point at ( f ,  4, f )  we found a minimum total energy of 7.87 Ryd per atom at a lattice 
parameter of 5.39 A. This agrees well with other more conventional pseudopotential 
calculations (e.g. Yin and Cohen 1982). 

The amount of extra computing that is introduced by the non-local corrections 
depends very much on the problem in hand. If there are N plane waves, M occupied 
bands and P atoms in the unit cell, both (7) and (8) involve - N x M x P terms. 
The local contributions scale differently because of the repeated use of FFTs. To give 
some examples: for the eight atom calculations referred to above the time spent in 
the non-local subroutines varied from 75% of the total time for a calculation where 
the 1 = 0 pseudopotential is taken to  be local to 47% for 1 = 2 local. This difference 
simply reflects the different number of components (i, j) which appear in (7a), (7b) and 
(7c). For the one atom per cell calculations the non-local contributions form a much 
smaller proportion of the total time; as little as 17% for the 1 = 2 local calculation. In 
general, it can be seen that the inclusion of non-local pseudopotentials does increase 
the computational requirements of the Car-Parrinello method, but not to  the extent 
that calculations become severely limited. 

3. Adsorbate-induced surface reconstruction 

The reconstruction of the Si(l l1) surface due to  adsorbed atoms has recently at- 
tracted considerable attention, both theoretically and experimentally (e.g. Northrup 
1984, Nicholls el a1 1987, IIamers and Demuth 1988, Bedrossian el a1 1989, Lyo et 
a1 1989). Our interest stems from a recent x-ray diffraction study of the Si(l l1) 
t/3 x 43-Sn reconstructed surface (Conway e l  a1 1989). The experimentally deter- 
mined structure is shown schematically in figure 2 and the structural parameters are 
listed in table 2. In this paper we use this system basically as a test of our non-local 
Car-Parrinello code; more details of the electronic structure will be presented else- 
where (Ramchurn el a1 1990). In particular, we look at  the H3 and T4 adsorbate 
sites (Northrup 1984), comparing their total energies and analysing the surface and 
sub-surface reconstruction. 

Table 2. Structural parameters for the T, reconstruction (see figure 2). The A 
represent vertical displacements (+ is up, - is down) and the a represent lateral 
displacements (- is towards Sn atoms, + is away). For our theoretical results we 
estimate errors of about f0.03 A. 

Displacement Theory (A) Experiment (A) 

A2 +0.29 +0.20 

A 3  +0.07 +0.17 

a1 -0.13 -0.21 
a4 +0.05 +0.10 

A2' -0.48 -0.42 

A3' -0.15 -0.35 



Ab-initio study of S i ( l l 1 )  J3 x ,/$-Sn 7441 

(a1 

I I I 

Figure 2. ( a )  Plan view of the T4 chemisorption site showing both J3 x J3 (dotted) 
and orthorhombic cells. Top layer silicon atoms (full circles), second and third layem 
(small open circles), and fourth and fifth layers (crosses) are also shown. Large 
open circles represent the Sn adatoms. Arrows (not to scale) represent directions of 
displacements in the relaxed structure. In the H3 site the adatoms sit above fourth 
and fdth layer atoms. ( 6 )  Side view of the T4 structure. The notation is the same as 
in ( a ) .  

In our calculations periodicity normal to the surface is obtained using a supercell 
which consists of four double layers of silicon separated by 2.4 double layers of vacuum. 
Tin atoms are placed on both top and bottom surfaces. This means that our sub- 
surface reconstruction can only be expected to  be reliable in the first double layer. 
The second double layers in from the top and bottom surfaces must interact to  some 
extent and, of course, no information can be recovered about the third and deeper 
double layers. The Sn pseudopotentials were generated with a 5 ~ ~ 5 p ' 5 d ' . ~  reference 
configuration and were subjected to  the same tests as described for Si above. The 
form of the projection integrals (5) is shown in figure 1. For both Si and Sn the 1 = 1 
component of the pseudopotential was chosen to  be the local part. 

In order to  keep the total energy minimization as unbiased as possible we have 
used an orthorhombic unit cell instead of the hexagonal cell of the ,/3 x ,/3 structure 
(figure 2). This enables us to  determine whether the ,/3 x ,/3 cell is stable relative to  an 
uncentred 3 x J3 reconstruction. Similarly, we do not impose the 3m point symmetry 
which is assumed in the experimental determination. Thus any structure within the 
orthorhombic cell could in principle be found. However, because of the size of the 
calculation a smaller kinetic energy cut-off (5.88 Ryd) than that used previously is 
used here. The theoretical lattice constant for Si at this cut-off is found to  be 5.44 A, 
which gives lattice parameters for the orthorhombic supercell of Q = 11.54 A, b = 
6.66 A,c = 17.66 A. A single k-point at  (O,O,O) is used, yielding a 2213 plane wave 
calculation. The Fourier transform box has dimensions 27 x 16 x 36. With 52 atoms 
in the unit cell, the energy functional therefore has to be minimized with respect to 
(104 x 2213) complex variational parameters. Electronic convergence now requires 
about 400 timesteps while overall convergence of the atomic structure is obtained by 
the 700th timestep. Although these calculations are probably too small, both in the k- 
point density and the kinetic energy cut-off, to produce highly accurate total energies 
and atomic positions, the work of Meade and Vanderbilt (1989) on related systems 
indicates that smaller calculations do find the same basic structure as very large ones. 
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Our calculations have been performed on a SUN4 workstation, the longest runs taking 
about 300 h. With greater computational resources the results could clearly be refined. 

Relaxation of the structure was performed with the Sn atoms starting in both H ,  
(above fourth single layer atoms) and T4 (above second layer atoms) sites. As found 
by Northrup (1984) in his calculations on A1 adsorption on S i ( l l l ) ,  if the substrate is 
not allowed to  relax we find the H ,  site to be energetically favourable. However, when 
unconstrained relaxation is allowed the final T4 structure is found to be more stable 
than the H3 by 0.3 eV per adatom, again in line with Northrup’s (1984) calculations. 
The minimum energy structure is found to adopt a 43 x 43 cell and to retain 3m 
symmetry to  a high degree of accuracy. The maximum difference in the positions 
of any two atoms which are related by the 3m symmetry of the x-ray determined 
structure is 0.03 d;, which should be compared to the maximum displacements of 
about 0.4 A.  Similarly, inversion symmetry about the centre of the slab is retained to  
a high accuracy. 

Top and side views of the T4 relaxed structure are shown in figures 2(a) and 2(6) 
respectively. Numerical values of the displacements are given in table 2, where our 
theoretical values are compared with the experimental data of Conway et a1 (1989). 
The agreement is seen to  be very good, both in the sign and the magnitude of the 
displacements. The greatest discrepancy occurs for the third and fourth layer dis- 
placements which, as discussed above, is not surprising given our slab geometry. We 
find the Sn atoms to sit 1.44 f 0.05 A above the surface, compared with experimental 
values of 1.44 f 0.32 d; or 1.59 d;, depending on the type of fit that was used. 

In conclusion, we have shown that our implementation of a non-local Car- 
Parrinello code is capable of performing large-scale total energy minimization. We 
are happy to  provide the programs to interested researchers-contact should be made 
via electronic mail to  pysdb@uk.ac.bath.gdr. 
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